

WHAT'S EATING YOUR WATTS?

A GUIDE TO HOW MUCH ELECTRICITY YOUR APPLIANCES USE PER YEAR

Texas homes use more electricity than any other state, and the biggest power users are often the appliances that run the longest or cycle on and off all day. Older or poorly maintained appliances, especially those made before 2006, can use 30%–50% more electricity than newer energy-efficient models. This guide compares how much electricity common household devices use and what that means in annual cost for a typical Bluebonnet Electric Cooperative member.

THE BIGGEST ENERGY HOG

HVAC SYSTEM

(Heating, Ventilation & Air Conditioning)

On average, consumes up to **45%** of home's annual electricity use

In summer months, percent spikes to **50%-70%**

APPROXIMATE ANNUAL COST IN BLUEBONNET REGION

Old system with SEER* rating of 10: \$691

New system with SEER rating of 20: \$288

*SEER stands for *Seasonal Energy Efficiency Ratio*, the standard rating used to measure the cooling efficiency of air conditioners and heat pumps

Higher SEER number = more efficient = lower electricity use for the same cooling output

HUNGRY, HUNGRY POWER HOGS

ELECTRIC WATER HEATER

Old: 3,300–5,000 kWh
New: 3,000–4,500 kWh

ANNUAL COST:
Old unit: \$398
New unit: \$360

POOL PUMP

Old single-speed: 1,500–6,000 kWh
New variable-speed: 600–2,500 kWh

ANNUAL COST:
Old: \$360
New: \$148

CLOTHES DRYER

Old: 600–1,200 kWh
New: 250–600 kWh

ANNUAL COST:
Old: \$86
New: \$41

WINDOW AC UNIT

Old: 600–2,000 kWh
New: 300–900 kWh

ANNUAL COST:
Old: \$125
New: \$58

REFRIGERATOR/ FREEZER

Old: 450–1,400 kWh
New: 300–450 kWh

ANNUAL COST:
Old: \$89
New: \$36

CLOTHES WASHER

Old top-load: 200–400 kWh
New front-load: 50–130 kWh

ANNUAL COST:
Old: \$29
New: \$9

CEILING FAN

24/7: 657 kWh
8 hrs/day: 219 kWh

ANNUAL COST:
Old: \$63
New: \$21

ROBOT VACUUM

75 kWh

ANNUAL COST: \$7

MICROWAVE

Old: 91 kWh

New: 70 kWh

ANNUAL COST:
Old: \$9
New: \$7

SMART SPEAKER

Old: 15–30 kWh

New: 5–10 kWh

ANNUAL COST:
Old: \$2
New: \$1

SOMEWHAT PIGGY

TELEVISION

Old plasma/LCD: 200–600 kWh

New LED/LCD: 30–450 kWh

ANNUAL COST:

Cost 75": \$36
Cost 50": \$23

DISHWASHER

Old: 50–400 kWh

New: 200 kWh

ANNUAL COST:

Old: \$25
New: \$19

COOKTOP & OVEN

Coil/radiant cooktop: 250–500 kWh

Induction cooktop: ~200 kWh

ANNUAL COST:

Oven: 450–675 kWh
Old: \$65 New: \$34

DESKTOP GAMING PC

Old: 200–600 kWh
New: 60–250 kWh

ANNUAL COST:

Old: \$38
New: \$15

APPLIANCE INSIGHTS & TIPS

Appliances made in 2001 or earlier can use 40%–50% more electricity than new, more efficient models. Appliances that are more than 10 years old may use 28%–36% more electricity.

Seals, motors and insulation degrade over time, increasing electricity use.

Always-on devices continue to draw power: Refrigerators, pool pumps, desktop computers, gaming consoles, routers and digital displays.

Appliances with the greatest leaps in efficiency: HVAC systems, refrigerators, water heaters, pool pumps and dryers.

Worst in class: Old refrigerators and outdated HVAC systems (leaky ducts can cost hundreds annually).

The Department of Energy has a refrigerator-rating tool on energy.gov for year-by-year comparisons.

More tips: Texas PUC's Power to Save website, www.puc.texas.gov/waystosave.

Sources: U.S. Energy Information Administration; U.S. Department of Energy; Energy Star; EPA; Lawrence Berkeley National Lab; EnergySage; NRDC; appliance manufacturers; consumer product testing; Bluebonnet Electric Cooperative residential rates.

* All annual power costs are approximate averages, calculated for Bluebonnet members

WHAT IS A HEAT PUMP?

Appliance heat-pump technology moves heat instead of creating it. Unlike traditional appliances that generate heat with electric coils, those with heat pumps pull heat from the surrounding air and transfer it where it's needed. That makes them far more efficient — often using 50% or less electricity than standard appliances, whether heating water, drying clothes or cooling and heating a home.